26 research outputs found

    Model-driven Scheduling for Distributed Stream Processing Systems

    Full text link
    Distributed Stream Processing frameworks are being commonly used with the evolution of Internet of Things(IoT). These frameworks are designed to adapt to the dynamic input message rate by scaling in/out.Apache Storm, originally developed by Twitter is a widely used stream processing engine while others includes Flink, Spark streaming. For running the streaming applications successfully there is need to know the optimal resource requirement, as over-estimation of resources adds extra cost.So we need some strategy to come up with the optimal resource requirement for a given streaming application. In this article, we propose a model-driven approach for scheduling streaming applications that effectively utilizes a priori knowledge of the applications to provide predictable scheduling behavior. Specifically, we use application performance models to offer reliable estimates of the resource allocation required. Further, this intuition also drives resource mapping, and helps narrow the estimated and actual dataflow performance and resource utilization. Together, this model-driven scheduling approach gives a predictable application performance and resource utilization behavior for executing a given DSPS application at a target input stream rate on distributed resources.Comment: 54 page

    A Model for Studying Vasogenic Brain Edema

    Get PDF
    Convection-enhanced delivery (CED) is a proven method for targeted drug delivery to the brain that circumvents the blood-brain barrier (BBB). Little study has been conducted in understanding CED in pathological brain states. This is of importance when dealing with chemotherapeutic agent delivery to brain tumors, where vasogenic edema (VE) exists. The current study aims to characterize a model of VE suitable for studying CED.VE was produced in the right hemisphere of the rat brain using multiple infusions of hyperosmotic mannitol (0.25mL/kg/s over 30 seconds) delivered through the right internal carotid artery. Magnetic resonance imaging (MRI) revealed consistent edema formation and high water levels in the ipsilateral gray and white matter within an hour of the first infusion. Evan\u27s Blue (EB) staining verified that VE has formed. However, apparent diffusion coefficient (ADC) and histological examination revealed also that some possible cytotoxic edema formed.This model provides a reproducible technique for generating a large area of edema for CED study. Further studies with lower doses of mannitol, while titrating to changes in ADC and values for fractional water content, may modify this model with a greater component of VE and less cerebral toxicity

    Phylogeography of mtDNA haplogroup R7 in the Indian peninsula.

    Get PDF
    BACKGROUND: Human genetic diversity observed in Indian subcontinent is second only to that of Africa. This implies an early settlement and demographic growth soon after the first 'Out-of-Africa' dispersal of anatomically modern humans in Late Pleistocene. In contrast to this perspective, linguistic diversity in India has been thought to derive from more recent population movements and episodes of contact. With the exception of Dravidian, which origin and relatedness to other language phyla is obscure, all the language families in India can be linked to language families spoken in different regions of Eurasia. Mitochondrial DNA and Y chromosome evidence has supported largely local evolution of the genetic lineages of the majority of Dravidian and Indo-European speaking populations, but there is no consensus yet on the question of whether the Munda (Austro-Asiatic) speaking populations originated in India or derive from a relatively recent migration from further East. RESULTS: Here, we report the analysis of 35 novel complete mtDNA sequences from India which refine the structure of Indian-specific varieties of haplogroup R. Detailed analysis of haplogroup R7, coupled with a survey of approximately 12,000 mtDNAs from caste and tribal groups over the entire Indian subcontinent, reveals that one of its more recently derived branches (R7a1), is particularly frequent among Munda-speaking tribal groups. This branch is nested within diverse R7 lineages found among Dravidian and Indo-European speakers of India. We have inferred from this that a subset of Munda-speaking groups have acquired R7 relatively recently. Furthermore, we find that the distribution of R7a1 within the Munda-speakers is largely restricted to one of the sub-branches (Kherwari) of northern Munda languages. This evidence does not support the hypothesis that the Austro-Asiatic speakers are the primary source of the R7 variation. Statistical analyses suggest a significant correlation between genetic variation and geography, rather than between genes and languages. CONCLUSION: Our high-resolution phylogeographic study, involving diverse linguistic groups in India, suggests that the high frequency of mtDNA haplogroup R7 among Munda speaking populations of India can be explained best by gene flow from linguistically different populations of Indian subcontinent. The conclusion is based on the observation that among Indo-Europeans, and particularly in Dravidians, the haplogroup is, despite its lower frequency, phylogenetically more divergent, while among the Munda speakers only one sub-clade of R7, i.e. R7a1, can be observed. It is noteworthy that though R7 is autochthonous to India, and arises from the root of hg R, its distribution and phylogeography in India is not uniform. This suggests the more ancient establishment of an autochthonous matrilineal genetic structure, and that isolation in the Pleistocene, lineage loss through drift, and endogamy of prehistoric and historic groups have greatly inhibited genetic homogenization and geographical uniformity.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Benchmarking Distributed Stream Processing Platforms for IoT Applications

    No full text
    Internet of Things (IoT) is a technology paradigm where millions of sensors monitor, and help inform or manage, physical, environmental and human systems in real-time. The inherent closed-loop responsiveness and decision making of IoT applications makes them ideal candidates for using low latency and scalable stream processing platforms. Distributed Stream Processing Systems (DSPS) are becoming essential components of any IoT stack, but the efficacy and performance of contemporary DSPS have not been rigorously studied for IoT data streams and applications. Here, we develop a benchmark suite and performance metrics to evaluate DSPS for streaming IoT applications. The benchmark includes 13 common IoT tasks classified across functional categories and forming micro-benchmarks, and two IoT applications for statistical summarization and predictive analytics that leverage various dataflow patterns of DSPS. These are coupled with stream workloads from real IoT observations on smart cities. We validate the benchmark for the popular Apache Storm DSPS, and present the results

    Hydrogen delivery through liquid organic hydrides: Considerations for a potential technology

    No full text
    Carrying hydrogen in chemically bounded form as cycloalkanes and recovery of hydrogen via a subsequent dehydrogenation reaction is a potential option for hydrogen transport and delivery. We have earlier reported a novel method for transportation and delivery of hydrogen through liquid organic hydrides (LOH) such as cycloalkanes. The candidate cycloalkanes including cyclohexane, methylcyclohexane, decalin etc. contains 6 to 8 wt% hydrogen with volume basis capacity of hydrogen storage of 60e62 kg/m3. In view of several advantages of the system such as transportation by present infrastructure of lorries, no specific temperature pressure requirement and recyclable reactants/products, the LOH definitely pose for a potential technology for hydrogen delivery. A considerable development is reported in this field regarding various aspects of the catalytic dehydrogenation of the cycloalkanes for activity, selectivity and stability. We have earlier reported an account of development in chemical hydrides. This article reports a state-of-art in LOH as hydrogen carrier related to dehydrogenation catalysts, supports, reactors, kinetics, thermodynamic aspects, potential demand of technology in field, patent literature etc

    Hydrogen delivery through liquid organic hydrides: Considerations for a potential technology

    No full text
    Carrying hydrogen in chemically bounded form as cycloalkanes and recovery of hydrogen via a subsequent dehydrogenation reaction is a potential option for hydrogen transport and delivery. We have earlier reported a novel method for transportation and delivery of hydrogen through liquid organic hydrides (LOH) such as cycloalkanes. The candidate cycloalkanes including cyclohexane, methylcyclohexane, decalin etc. contains 6 to 8 wt% hydrogen with volume basis capacity of hydrogen storage of 60e62 kg/m3. In view of several advantages of the system such as transportation by present infrastructure of lorries, no specific temperature pressure requirement and recyclable reactants/products, the LOH definitely pose for a potential technology for hydrogen delivery. A considerable development is reported in this field regarding various aspects of the catalytic dehydro-genation of the cycloalkanes for activity, selectivity and stability. We have earlier reported an account of development in chemical hydrides. This article reports a state-of-art in LOH as hydrogen carrier related to dehydrogenation catalysts, supports, reactors, kinetics, thermodynamic aspects, potential demand of technology in field, patent literature etc

    Dehydrogenation of methylcyclohexane over Pt/V2O5 and Pt/Y2O3 for hydrogen delivery applications

    No full text
    Dehydrogenation of methylcyclohexane (MCH) for hydrogen transportation and delivery application was carried out over 3 wt% Pt/V2O5 and 3 wt% Pt/Y2O3 catalyst. The catalytic activity was tested using a spray-pulse mode of reactor. Effective dehydrogenation of MCH under spray-pulse mode of reactant injection was observed. In terms of hydrogen evolution rate at 60 min from start of reaction the activity of 958 mmol/g/min was obtained at temperature of 350 �C. Nearly 100% selectivity toward hydrogen was obtained. A relatively high conversion of 98% was observed with 3 wt% Pt/Y2O3 at 60 min using an advanced spray-pulse reactor system. The catalysts were characterized using x-ray diffraction pattern (XRD), CO-chemisorption metal analysis, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis

    Catalytic dehydrogenation of cyclohexane over Ag-M/ACC catalysts for hydrogen supply

    No full text
    Dehydrogenation of cyclohexane to benzene has been carried out over Ag supported on activated carbon cloth (Ag/ACC) catalysts using a spray- pulse reactor. Hydrogen evolution was studied for hydrogen storage and supply system applications. The maximum rate of hydrogen evolution rate using monometallic Ag/ACC catalysts was 6.9 mmol/gmet/min for Ag loading of 10 wt%. An enhanced hydrogen evolution was observed by adding a small amount of noble metal (1 wt% Pt, Pd, Rh) to the Ag based catalysts. A synergistic effect was observed in the case of the Pt promoted catalysts on the hydrogen production were twice as compared to 10 wt% Ag catalyst only
    corecore